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Using a wave function including the ls-2s-2p eigenstates of hydrogen and

the is ground state of positronium, we have calculated the position and width of

the lowest Feshbach resonance in the e -H system, which lies between the

positronium rearrangement threshold and the n = 2 hydrogen threshold. The

method differs from the usual close-coupling method, resembling in its formu-

lation the projection operator technique, although orthogonality of closed-channel

and open-channel functions is not demanded. The resonance lies 9.8281 eV above

the ground state of hydrogen and has a width of 0.029 eV in this approximation.
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I. Introduction

In the past few years the theory of non-resonant positron-hydrogen

scattering has been throughly investigated. For S-waves, the situation below

the positronium formation threshold is very clear, 2 while recent work3,4,

seems to be leading rapidly to a solution of the two-channel problem above

threshold.

A number of investigations into possible structure in the S-wave problem

have also been carried out with negative results. Attempts to find a three-body

bound state by variationalmethods 6 ' 7 were not successful and it was finally

proven8 that no such state exists. An indication of a scattering resonance?

below the positronium formation threshold is probably an artifact. 7'

The usual method of searching for such compound-atom resonances is

with the aid of Feshbach projection operators. 1' The idea is to remove the

open-channel parts of the scattering problem, leaving a residual Hamiltonian

possessing a discrete spectrum. Resonances of the scattering problem can be

shown' 2 to lie in the vicinity of the eigenvalues of the residual Hamiltonian,

and in practice such resonances are really extremely close." For this reason,

it has usually been assumed that resonances exist whenever eigenvalues of the

residual Hamiltonian appear; the shifts A due to coupling between closed and

open channels have never yet been large enough to alter the qualitative situation.

Several attempts to find eigenvalues below the positronium formation threshold

gave negative results 2' 7,14 and it is now believed that no resonances exist in

this region.



4

It is natural to consider next the possible existence of resonances just below

the n = 2 threshold in hydrogen. One might be optimistic about finding such

resonances in the positron-hydrogen case since it is well known that the 2s-2p

degeneracy produces an infinite sequence of resonances in the electron-hydrogen

case.s Not only do the eigenvalues of the residual Hamiltonian form a clear-

cut infinite sequence lying wholly below the threshold, i s but scattering calcu-

lations' 6 imply very small values of A, at least for the low-lying resonances.

Mittleman' 7 has examined the analogous problem for positrons. Here the

situation differs because a second (positronium) channel is open and it is more

difficult to handle the non-orthogonal functions representing the two open

channels. Nevertheless, he showed that the potential is the same asymptotically

as in the electron case, falling off as the inverse square of the positron co-

ordinate. Hence, the same conclusion follows: there must be an infinite set of

eigenvalues here also. No information on the actual energies was obtained,

however, since that depends on the short-range behavior of the potential as well.

Also important, however, is the fact that Mittleman's paper' 7 gives no

information about A, the energy shift, which in this case involves coupling with

both open channels and might be large enough to move the resonances far away

from the positions of the eigenvalues. Although this phenomenon has never been

observed before, it must fiot be overlooked as a possibility. This is especially

true since a fairly close search has failed to find any resonances in a two-

channel lower bound calculation, while a close-coupling calculation 18 omitting

the positronium channel gave the first three S-wave resonances explicitly.
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It is the purpose of this Article to clarify the situation with regard to the

two-channel resonances. In Section II we formulate an approximate two-channel

scattering equation, from which the lowest resonance position and width can be

obtained by a modification of the Feshbach operator formalism. In section III

we discuss an explicit form for the correlation function describing the resonant

state. Section IV gives our conclusions and a discussion, while some mathematical

details are in an Appendix.

II. Formulation of the Approximation

Let us assume for the moment that some normalized function Q( exists and

describes well the long-lived three-particle state responsible for the resonance.

(Later on a particular form for ( will be selected). A two-channel scattering

function can be constructed in the following form:

Here the ground state of hydrogen is designated is and that of positronium is Is,

x and r are the positron and electron coordinates respectively, while the two

coordinates

R -(la)

describe the center of mass position and relative coordinate of the positronium.

The two functions y and F and the constant C are to be determined; the last is

large when the energy is near resonance.
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Coupled equations for these three unknowns are derived by standard vari-

ational methods. The resulting set is as follows:

fd? OlIs 3H-E1E] =O (2a)

d ?) Li 14 -E = O (2b)

d d~ rH-E]o(2c)

Here

and

From Eq. (2c) we can obtain an expression for C in terms of % and F as

where we have defined

c5E (4)
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and have re-written the volume element in the second integral. The energy E

should lie near the resonance represented by D. It is convenient to define two

new functions

and

T (R' d (H-E) , (

and to rewrite Eq. (3) (after integration by parts) as

C, R% 3 I AJ FT I, (6)

Inserting this expression into Eqs. (2a, 2b) we derive the coupled equations in

the optical potential form

where '' and V are column vectors defined as

(8)

K I is the quantity in square brackets in Eq. (6), and C is the 2 x 2

matrix whose elements are as follows:
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-3 5dz ,i iCHl-F1~i(~. @ ) )(9)

where

(The diagonal elements of r are no more complex than differential operators,

while the two off-diagonal elements are integral operators understood to operate

on F and X respectively. Details are given in the Appendix.) Eq. (7) is thus a

set of coupled homogeneous integro-differential equations, whose possible

resonant behavior is due to the second (optical potential) term. The similarity

to the usual optical potential methods is clear.

Following Chen and Chung 1 9 we solve Eq. (7) by a non-iterative method.

Letting

.+ <v -( - (10)

where j = 1, 2 refers to two regular, linearly independent solutions of Eq. (7),

we must solve

'- , (Ila)

S > + b d L / (11b)
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Only one particular solution of the inhomogeneous equation (11b) is needed.

Using the definitions given in Eqs. (8) and (10) one finds

<V.Lk ,>E~-E>~. <(12)

where the bracket notation is an obvious extension of that defined in Eq. (8).

Thus from two solutions of the homogeneous equation (Ila) one can construct

the "coupled static" approximation, while through Eqs. (10) and (12) the solution

of the inhomogeneous equation (11b) leads to two solutions incorporating the ef-

fect of coupling to the "resonant" state <p.

The most convenient way to represent the scattering parameters, for

coupled and uncoupled cases alike, is in terms of the K-matrix. For any two

regular, linearly independent solutions (either '1' or IF ) one obtains the

following asymptotic form

+ g(13)

For i, j = 1, 2 the quantities Aij and B.j form 2 x 2 matrices and the K-matrix

is defined as

K -- A (14)
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and is related to the S-matrix by

Let us now choose a special set of solutions to the homogeneous equation

(Ila) with the matrix A equal to the identity matrix and hence B = K°, the

coupled static K-matrix. Noting the fact that the off-diagonal elements of K are

very small compared with the diagonal elements 3,4,5 [see Table I1, we

simplify the analysis by setting Ko = KO = 0. This approximation is equivalent
12 21

to treating the two physical channels (e+ + H and Ps + p) as eigenchannels in the

coupled static approximation. It does not imply that the coupling between these

two channels is unimportant, and in our numerical solutions we have not

neglected the off-diagonal elements of C. (See Sec. IV.) Only in the asymptotic

region are the two physical channels assumed to be uncoupled.

With the above simplification it will be convenient to choose the asymptotic

forms of T and U as follows:

z(16b)

(16c)
.2e ;7
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From the expressions in Eqs. (10 - 14) we can now construct the K-matrix in-

cluding the coupling to the resonant state as follows:

4 L'(k1f (17)

where
-i

and

To relate the various quantities appearing in Eq. (17) to the resonance

position and width, we note that the eigenphase sum exhibits typical Breit-

wigner behaviour. That is,

where 77 and 9 are the resonant and non-resonant (static exchange) eigen-

phases, F is the width and ER is the position of the resonance. (The individual

eigenphases may or may not exhibit such behavior). Using trigonometric

identities we can show that

I- I X b__ ( K-E) I ) (19)
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where

Sd K (20)

and we recall that the eigenvalues of K are tan 77, and tan 72. Using Eq. (17)

we find that

[= Go ,(21)

Inserting these expressions for P and Q into the left side of Eq. (19), we can

make the following identification

1- -fF (22)
1i1 22 2 ( -E

and hence (from Eq. (17))

ER 8tKi A'i>E 8+A
(23)

These relations are the principal results of this section of the paper, and are

correct provided (as usual) that q7, ER and F can be treated as constant across
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the resonance, and that A is not too large. We have essentially re-derived the

results of Chen and Chung 1 9 for the two-channel special case being examined

here with special emphasis on the asymptotic forms of T'0 and ' 1. In addition,

we have not required that the resonant part of the trial function be orthogonal to

20
the rest of the function as is usually done.2

III. The Close-Coupling Correlation Function

Since we know that the degeneracy between the 2s and 2p levels of hydrogen

15, 17
produces the infinite series of Feshbach resonances , it is natural to choose

the resonant term in our trial function to include those two states:

/-I ru~Q~~ ± x5)1L) Q.-2(24)

where

and
-2 A

The normalization constant is given by

N- ri T /Lr c (25)

By minimizing F with respect to u and v in Eq. (4) we obtain the equations
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where

and

The potentials are easily obtained:21

/j (27)

- + - + -

Assuming a value for the eigenvalue E, the two coupled second-order differential

equations (26) were solved numerically: two regular, linearly independent

solutions were obtained by integration outward from the origin and two others

by integration inward from some large radius x 0. Admissable solutions are

those for which M and dM/dx are continuous at the matching point 5E; the

continuity condition is equivalent to the determinantal condition
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The index i varies from 1 to 4 to specify the four linearly independent solutions,

while j varies from 1 to 4 to denote a = u, v, du/dx and dv/dx, respectively. We

were able to obtain the first two eigenvalues accurately (with xo0 100) using

Eq. (28). They are

(29)

In the next section we will discuss these results, comparing them with previous

work. 8 For the moment, let us just note that the ratio of the two eigenvalues

2 / 1 = 0.0613; this is to be compared with the ratio 0.0583 based on the x - 2

potential alone. 1s

We can now proceed to the calculation of V [Eqs. (5) and (8)], required for

obtaining the resonance parameters. Its two components are [from Eqs. (5)

and (24)]

(x) '4c~& i(- IT~LLx (ih)()( (30a)N '-P 1 )
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T(R)= (A)ci [ rL((z)[ - )

V2 -1 02 ~ (30b)

Equation (30a) is simple because of orthogonality while Eq. (30b) has been

simplified somewhat by removing any derivatives that appear through the use of

Eq. (26). We can re-write Eq. (30a) as

5 Y N [(x)L&) 4Vj(x) IU (31)

where

(32)

-t - + -- + -. 2

while Eq. (30b) requires double numerical integration. In Fig. 1 we plot

S= 2n /2 x S and T = 4v~T RT to give an idea of their range and form; only the

first resonance, corresponding to E, will be discussed from now on.

IV. Results and Discussion

Once the coupling term V [Eqs. (8) and (30)] and the operator 2 [Eq. (9) and

Appendix] are in hand we need only to solve the two sets of coupled equations

(11), as discussed above, to obtain the position and width of the lowest e+ - H
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resonance. These parameters constitute the main results of this work and will

be discussed below.

In Table I we list the non-resonant scattering parameters, obtained from

the homogeneous equations (11a), and compare them with the results of Ref. 5.

These depend on the accuracy of our integration technique and our representation

of the integral operator f, as discussed in the Appendix. We used a simple,

less accurate method than that in Ref. 5, truncating the coupled equations at

x = 20 and R = 12, and it is reassuring that only small errors were thus intro-

duced. The two off-diagonal elements of K' should be equal; our truncation re-

sults in significant inequality, although the average of the off-diagonal terms is

in almost exact agreement with Ref. 5. Note, however, that these off-diagonal

elements are small, as we have assumed; the two eigentangents are almost in-

distinguishable from the corresponding diagonal elements of K° . We also show

results of the uncoupled approximation resulting from the omission of the off-

diagonal parts of C. It is interesting to note that this omission hardly affects

the e - H channel, 4 while the Ps - P channel is modified radically.

In Table II we give the properties of the lowest resonance. (Details of the

numerical calculation are in the Appendix.) The main conclusion is that the

resonance is quite far below the n = 2 threshold (0.3763 eV) and narrow enough

to be well defined, with a width only 8% of the distance to threshold. Several

other points should be noted:
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1. When we drop the off-diagonal parts of £ the widths and shifts of the two

channels separate, and one in effect is calculating with the two distinct wave

functions (1s, 2s, 2p) and (1s, 2s, 2p). Since the decay of the resonant state

(2s, 2p) can occur through either open channel the total width and shift are

sums over the two distinct cases. The first of these (e - H) should correspond

to the case treated by Seiler et al.1 8 Comparing the first two lines in Table II

we see that the resonance positions are in quite good agreement, while the

width is not in agreement at all. We do not understand this discrepancy, but

have noticed that the ratio of the two results is close to the numerical value of

the rydberg in eV. It may be that an error was made in Ref. 18 in expressing

F in eV. Assuming that, we divide their value for F by R. and obtain a value of

8.305 x 10 - s eV, differing from our result by only 1.3%.

2. The second (Ps - P) channel has a much larger effect on both width and

shift than the first. In the uncoupled approximation this amounts to a factor of

about 7 in A and about 35 in F . This is expected for A, since only the sum

S+ A has physical meaning and . itself depends on the separation between "open"

and "closed" parts of the wave function. In channel 1 we have used an open-

channel function orthogonal to the (2s, 2p) closed-channel function, but not in

channel 2. We expect ER = E+ A to be fairly reliable and probably an upper

bound to the true resonance energy. On the other hand, F is an observable it-

self, and its sensitivity to the several approximations shown perhaps implies

that even our best result may be unreliable: our best F is about 10 times
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larger than our uncoupled width, while our best A is only 1.4 times smaller

than our uncoupled shift.

3. In order to compare our non-resonant results with previous work,s we

solved the scattering equations at k = 0.85 instead of k = 0.847781 which corre-

sponds to the exact value of E. This is certainly an insignificant error. An

improvement would be to calculate A again at the value of k corresponding to

ER, continuing to recompute A until convergence is attained. This correction

is also expected to be small. In fact, the value at our ER is k = 0.8499; by

accident we have evaluated A and F at very nearly the best possible k.

4. The resonance described here may be compared with the lowest

resonance in e- - H scattering, as treated in the ls-2s-2p approximation 1 as

follows:

r "H ! H- C. 5 .
Thus, the two two types of resonances are not qualitatively different. The long-

range potentials are the same and the positronium channel is similar to the

exchange channel, while the change in sign of the short-range static potential

raises the e - H energy and lowers the e - H energy.
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APPENDIX

A. Evaluation of the operator Z

In order to solve Eq. (7) [or its equivalent, Eq. (11)] we must evaluate the

integro-differential operator 2 [Eq. (9)]. Its diagonal elements are very easy

to obtain:

(Al)

Here we have used either (x, r) or (R, P) variables as convenient and have made

the definitions

2 2 - (M)

also note that Is and qs are eigenfunctions of these Hamiltonians with eigen-

values Els = -1 and E -=- 1/2 respectively. The potential in Eq. (Al) is

V 2 = -2x (: 1 i ) (A4)

tsk:)- 2e-1
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the static or Hartree potential felt by the positron inthe field of an undistorted

hydrogen atom. (The corresponding potential in the positronium channel vanishes

due to antisymmetry and is absent from Eq. (A2). That is why K22 = 0 in the

uncoupled approximation in Table II).

The off-diagonal elements are discussed in Chan's thesis [Ref. 51 and will

be briefly reviewed here. The (21) element can be written as

f -- r- ]3(5,(5

where we have used the fact that (is is an eigenfunction of H0 (r) and have com-

muted it to the left side. By changing variables from R,p to R, x and integrating

by parts we obtain the form

(A6)

where the factor of 8 is the Jacobian of the transformation. In analogous fashion

we can write

(A7)

R Fn (R)V i.\
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We can show that G (x, R) = G (R,x) by changing variables from x, R to r, P

and writing

Then we can evaluate the kernel itself most conveniently as

4- -4-r

The cross-term is done explicitly and we use the relations between the

energies [Eq. (2)]. Finally, we obtain the result

where r = 2R - x and p = 2 (R - x).

Since we are interested only in total S-wave scattering, we allow X and F

to depend only on the magnitudes x and R. This allows us to carry out the

angular integrations in Eqs. (A6) and (A7) over/ = X R by numerical Gaussian

quadrature. The final expression of Eqs. (11) involving the operator E is then
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(f(All)

where

and S, T are defined following Eq. (32) and shown in Fig. 1. The S-wave kernel

is

-I

where

,+_
A- (4R2 e 4R

2

It is easily shown that for small x, K(R,x)ae -R while for small R, K(R,x)de - x .

From these results it appears that K extends further in x than in R. A trouble-

some ridge occurs for x = R, along which K decreases very slowly. Following

Chan5 we have evaluated K(R,.x) separately in the four regions bounded by the
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straight lines x = 0, x = R, x = 2'/2 R, x = 2R and R = 0, using simple trans-

formations to avoid singularities and employing numerical Gaussian quadrature.

We chose to solve the integro-differential equations by converting them to

a set of linear algebraic equations which is numerically inverted. Specifically,

we used a three-point central-difference formula to approximate the second

derivative and the trapezoid rule for integration. A considerable improvement

in accuracy is obtained by a simple modification; for example, the first homo-

geneous equation of (All) becomes

-; (A13)

where

-J

and h is the appropriate lattice interval A x or z R. We obtained sufficient ac-

curacy for the homogeneous equations using the following set of intervals:

.. Y c . X/;- ,A% o.o- = .2.l2,/, R .IZ) i&

~0 2.. 2 , R 0.24 - 2 ., R i 2 1
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This gives a total of 100 values each for fn and g. and a set of 200 linear equa-

tions to invert. Beyond this region, the equations (All) effectively uncouple

since K= 0, but the inhomogeneous terms are not negligible. The inhomogeneous

equations were continued out to x, R = 50 as ordinary differential equations, and

all the integrals needed to obtain A and F were also carried out that far.

On the other hand, Chan and Frasers chose to solve the homogeneous Eqs.

(All) by first converting them to integral equations. This involves some addi-

tion work, but enables one to use Gauss-Laguerre integration which can repre-

sent the unknown functions on an optimal lattice of points. Judging from their

results and ours, it would seem that the integral equation method has some real

advantages in accuracy and economy.
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Table I. Non-Resonant (is - is) Scattering Results at k = 0.85

Ref. 5 Present Work
Coupled Coupled Uncoupled

KO -0.3674 -0.3672 -0.4058
11

K1 0.1035 0.0943 0

K" 0.1035 0.1078 0
12

1/2 (Kl2 + K ) (0.1035) (0.101) (0)

K2  10.196 10.207 0

tan n0 -0.3684 -0.3682 -0.4058

tan 0( 10.197 10.208 0
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Table II. Properties of the lowest resonance. Our results are in eV,

using R. = 13.60583 eV [Ref. 22]. (The results in Ref. 18 were re-

ported in eV; but the value of the rydberg used was not stated). The

unshifted energy E = 9.77896 eV. Our best result is given on the last

line.

Width F Shift A Resonance
position ER  +A

e - H channel only 8.20 (-5) 8.94 (-3) 9.7879

Ref. 18. 1.130 (-3) 9.7845

Both channels (uncoupled) 3.03 (-3) 6.88 (-2) 9.8478

Both channels (coupled) 2.94 (-2) 4.91 (-2) 9.8281
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Figure 1. The resonant coupling functions S = 2 r x S(x) and T = 41/2 RT(R),

plotted against x and R respectively.
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